Constant illumination reduces circulating melatonin and impairs immune function in the cricket Teleogryllus commodus
نویسندگان
چکیده
Exposure to constant light has a range of negative effects on behaviour and physiology, including reduced immune function in both vertebrates and invertebrates. It is proposed that the associated suppression of melatonin (a ubiquitous hormone and powerful antioxidant) in response to the presence of light at night could be an underlying mechanistic link driving the changes to immune function. Here, we investigated the relationship between constant illumination, melatonin and immune function, using a model invertebrate species, the Australian black field cricket, Teleogryllus commodus. Crickets were reared under either a 12 h light: 12 h dark regimen or a constant 24 h light regimen. Circulating melatonin concentration and immune function (haemocyte concentration, lytic activity and phenoloxidase (PO) activity) were assessed in individual adult crickets through the analysis of haemolymph. Constant illumination reduced melatonin and had a negative impact on haemocyte concentrations and lytic activity, but its effect on PO activity was less apparent. Our data provide the first evidence, to our knowledge, of a link between exposure to constant illumination and variation in haemocyte concentration in an invertebrate model, while also highlighting the potential complexity of the immune response following exposure to constant illumination. This study provides insight into the possible negative effect of artificial night-time lighting on the physiology of invertebrates, but whether lower and potentially more ecologically relevant levels of light at night produce comparable results, as has been reported in several vertebrate taxa, remains to be tested.
منابع مشابه
Sexual Signaling and Immune Function in the Black Field Cricket Teleogryllus commodus
The immunocompetence handicap hypothesis predicts that male sexual trait expression should be positively correlated with immunocompetence. Here we investigate if immune function in the cricket, Teleogryllus commodus, is related to specific individual components of male sexual signals, as well as to certain multivariate combinations of these components that females most strongly prefer. Male T. ...
متن کاملImmune function reflected in calling song characteristics in a natural population of the cricket Teleogryllus commodus
Secondary sexual traits have been suggested to provide reliable signals of a male’s ability to resist infection by agents of disease. The immunocompetence handicap hypothesis provides a potential mechanism for reliable signalling in the form of a trade-off between expenditure on trait expression and expenditure on immunity. Thus, males resistant to disease can spend more resources on their sexu...
متن کاملMelatonin: a possible link between the presence of artificial light at night and reductions in biological fitness.
The mechanisms underpinning the ecological impacts of the presence of artificial night lighting remain elusive. One suspected underlying cause is that the presence of light at night (LAN) supresses nocturnal production of melatonin, a key driver of biological rhythm and a potent antioxidant with a proposed role in immune function. Here, we briefly review the evidence for melatonin as the link b...
متن کاملLittle evidence for intralocus sexual conflict over the optimal intake of nutrients for life span and reproduction in the black field cricket Teleogryllus commodus
There is often large divergence in the effects of key nutrients on life span (LS) and reproduction in the sexes, yet nutrient intake is regulated in the same way in males and females given dietary choice. This suggests that the sexes are constrained from feeding to their sex-specific nutritional optima for these traits. Here, we examine the potential for intralocus sexual conflict (IASC) over o...
متن کاملLimited plasticity in the phenotypic variance-covariance matrix for male advertisement calls in the black field cricket, Teleogryllus commodus.
Phenotypic integration and plasticity are central to our understanding of how complex phenotypic traits evolve. Evolutionary change in complex quantitative traits can be predicted using the multivariate breeders' equation, but such predictions are only accurate if the matrices involved are stable over evolutionary time. Recent study, however, suggests that these matrices are temporally plastic,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2015